
Module-3: Nonlinear First-Order Partial Differential

Equations

1. Introduction

In this module, we discuss nonlinear partial differential equations of first-order of

the form

F(x,y,z,p,q) = 0 (1)

where x, y are independent variables, z = z(x,y) and p = ∂z
∂x , q = ∂z

∂y , the function F

being nonlinear. We have already seen in previous study that the partial differential

equation arising from the two-parameter system of surfaces

f (x,y,z,a,b) = 0 (2)

is of this form. We shall see later that the converse is also true.

Let us define first different types of solutions involved for the equation (1) and

consider a geometrical approach, introduced by Cauchy, to find the solutions.

2. Definitions of Various Types of Solutions

Any envelope of the system (2) touches at each of its points a member of the system

and, therefore, it has the same set of values (x,y,z,p,q) as the particular surface. Thus,

it is also a solution of the partial differential equation (1). Hence, we are led to the

following three types of integrals of the equation (1).

(a) Complete integral

The two-parameter system of surfaces of the form (2) is called a complete integral

of the equation (1).

(b) General integral

Suppose there exists a relation between the parameters a and b of the form b =

ψ(a), ψ being arbitrary. Then the one-parameter subsystem f (x,y,z,a,ψ(a)) = 0 of

the system (2) forms its envelope and is called the general integral of (1).
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(c) Singular integral

If the envelope of the two-parameter system of surfaces (2) exists, then it is also a

solution of the equation (1) and is known as the singular integral.

Example 1: Verify that z = ax + by + a + b − ab is a complete integral of the partial

differential equation z = px+ qy + p+ q − pq, a and b being arbitrary constants.

Show also that the envelope of all planes corresponding to complete integrals pro-

vided singular integral of the differential equation and determine a general integral

by finding the envelope of these planes that pass through the origin.

Solution: Let f (x,y,z,a,b) = z− (ax+by+a+b−ab) = 0 so that p = ∂z
∂x = a, q =

∂z
∂y = b and

hence f (x,y,z,a,b) = 0 is a complete integral of the equation z = px+ qy + p+ q − pq.

Now, the envelope of the two-parameter system f (x,y,z,a,b) = 0 is obtained by

eliminating a and b from the equations f = 0, ∂f∂a = 0, ∂f∂b = 0, i.e. from

z = ax+ by + a+ b − ab, −(x+1) + b = 0, −(y +1) + a = 0.

Elimination of a and b from these equations gives z = (x+1)(y+1) which is the singular

integral.

To find the general integral, we suppose that there exists a relation of the form

b = ψ(a) between the parameters a and b. So, we consider the one-parameter system

f (x,y,z,a,ψ(a)) = z − {ax+ψ(a)y + a+ψ(a)− aψ(a)} = 0.

Thus
∂f

∂a
= −

{
x+ψ′(a)y +1+ψ′(a)−ψ(a)− aψ′(a)

}
= 0

Since the envelope passes through the origin, so from equation f = 0, we get

−a−ψ(a) + aψ(a) = 0⇒ ψ(a) =
a

a− 1
⇒ ψ′(a) = − 1

(a− 1)2

Then the equation ∂f
∂a = 0 gives x − 1

(a−1)2y +1− 1
(a−1)2 −

a
a−1 +

a
(a−1)2 = 0⇒ a =

√
y
x +1

so that ψ(a) =
√
y+
√
x√

y .

Thus, from the equation f = 0, we get by substituting the values of a and ψ(a)

z =
√
y +
√
x

√
y
· x+

√
y +
√
x

√
y
· y +

√
y +
√
x

√
y
−
√
y
√
x
·
√
y +
√
x

√
y

⇒ z = 2
√
xy + x+ y, i.e. (x+ y − z)2 = 4xy.

This is the required general integral.
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3. Cauchy’s Method of Characteristics

We now introduce a method, due to Cauchy, based on geometrical idea, to solve

nonlinear partial differential of the form (1).

Suppose the plane through the point P (x0, y0, z0) with its normal parallel to the di-

rection n̂ with direction ratios (p0,q0,−1) be uniquely specified by the set of numbers

(x0, y0, z0,p0,q0). Conversely, any set of five real numbers defines a plane in three-

dimensional space. A plane element (x0, y0, z0,p0,q0) satisfying the equation (1) is

called an integral element.

We rewrite equation (1) in the form

q = G(x,y,z,p) (3)

and keep x,y,z fixed but vary p so that we obtain a set of plane elements {x0, y0, z0,p,

G(x0, y0, z0,p)} depending on the single parameter p only and passes through the point

P . Thus the planar elements envelope a cone with P as vertex, called the elementary

cone of the equation (1) at the point P .

Fig. 1

Now consider a surface S given by the equation

z = g(x,y) (4)

where the function g(x,y) and its first partial derivatives with respect to x and y are as-

sumed to be continuous in a regionΩ of the xy-plane. Then the tangent plane at every

point of S determines a plane element of the type
{
x0, y0, g(x0, y0), gx(x0, y0), gy(x0, y0)

}
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which is called the tangent element of the surface S at the point (x0, y0, g(x0, y0)). Thus,

we have the result:

Theorem 1: A necessary and sufficient condition for a surface to be an integral surface

of a partial differential equation is that at each point its tangent element should touch the

elementary cone.

Cauchy characteristic equations

Consider a curve Γ with parametric equations x = x(t), y = y(t), z = z(t) lying on the

surface S given by equation (4) so that

z = g{x(t), y(t)}, ∀ t ∈ I, (5)

where I is the given interval. Then, if P0 is a point on Γ determined by the parameter

t0. the direction ratios of the tangent line P0P1 are {x′(t0), y′(t0), z′(t0)}, where x′(t0) =(
dx
dt

)
t=t0

etc. This direction is perpendicular to the direction (p0,q0,−1) provided

p0x
′(t0) + q0y

′(t0) + (−1)z′(t0) = 0, i.e z′(t0) = p0x
′(t0) + q0y

′(t0).

Fig. 2

Thus, any set {x(t), y(t), z(t),p(t),q(t)} of five real functions satisfying the condition

z′(t) = p(t)x′(t) + q(t)y′(t) (6)

defines a strip at the point (x,y,z) of the curve Γ . If such a strip is an integral element

of the equation (1), viz. F(x,y,z,p,q) = 0, then it is called an integral strip of the equa-

tion. Thus the set of functions {x(t), y(t), z(t),p(t),q(t)} is an integral strip of this partial
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differential equation (1), if they satisfy the condition (6) and the condition

F {x(t), y(t), z(t),p(t),q(t)} = 0 ∀ t ∈ I. (7)

If at each point the curve Γ touches a generator of the elementary cone, then the cor-

responding strip is called a characteristic strip. The point (x + dx,y + dy,z + dz) lies on

the tangent plane to the elementary cone if

dz = pdx+ qdy (8)

where p, q satisfy the equation (1). Now differentiating (1) and (8) with respect to p,

we get respectively

∂F
∂p

+
∂F
∂q

∂q

∂p
= 0 and0 = dx+

dq

dp
dy. (9)

Using relations (8) and (9), we have

dx
Fp

=
dy

Fq
=

dz
pFp + qFq

. (10)

Thus, x′(t), y′(t), z′(t) are proportional to Fp, Fq, pFp + qFq respectively along a charac-

teristic strip. We choose the parameter t such that

x′(t) = Fp, y
′(t) = Fq, z

′(t) = pFp + qFq.

Now along a characteristic strip p = p(t), a function of t and, therefore,

p′(t) =
∂p

∂x
x′(t) +

∂p

∂y
y′(t) =

∂p

∂x
∂F
∂p

+
∂p

∂y
∂F
∂q

=
∂p

∂x
∂F
∂p

+
∂q

∂x
∂F
∂q
,

where we used the result ∂p
∂y = ∂2z

∂y∂x = ∂2z
∂x∂y = ∂q

∂x . Also, differentiation of (7) partially

with respect to x gives

∂F
∂x

+ p
∂F
∂z

+
∂F
∂p

∂p

∂x
+
∂F
∂q

∂q

∂x
= 0

i.e.
∂F
∂x

+ p
∂F
∂z

+ p′(t) = 0

so that on a characteristics strip

p′(t) = −(Fx + pFz).

Similarly, we have q′(t) = −(Fy + qFz).
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Thus, we have the following system of five ordinary differential equations for the

determination of the characteristic strip:

x′(t) = Fp, y
′(t) = Fq, z

′(t) = pFp + qFq,
(11)

p′(t) = −(Fx + pFz), q′(t) = −(Fy + qFz).

Equations (11) are known as Cauchy’s characteristic equations of the partial differential

equation F(x,y,z,p,q) = 0.

Theorem 2: The function F(x,y,z,p,q) is constant along every characteristic strip of the

partial differential equation F(x,y,z,p,q) = 0.

Proof: Along a characteristic strip

d
dt

[
F
{
x(t), y(t), z(t),p(t),q(t)

}]
= Fxx

′(t) +Fyy
′(t) +Fzz

′(t) +Fpp
′(t) +Fqq

′(t)

= FxFp +FyFq +Fz(pFp + qFq)−Fp(Fx + pFz)−Fq(Fy + qFz)

= 0

so that F(x,y,z,p,q) is constant along characteristic strip.

Corollary: If a characteristic strip contains at least one integral element of F(x,y,z,p,q) =

0, then it is an integral strip of this equation.

We are now in a position to solve Cauchy problem stated earlier.

Let us find the solution of the equation (1), viz. F(x,y,z,p,q) = 0 such that the integral

surface passes through the curve Γ having parametric equations

x = ϕ(ξ), y = ψ(ξ), z = χ(ξ). (12)

Then, in the solution

x = x(x0, y0, z0,p0,q0, t0, t) etc (13)

of the characteristic equations (11), we may take the initial values of x,y,z as x0 = ϕ(ξ),

y0 = ψ(ξ), z0 = χ(ξ) and so the corresponding values of p0,q0 are given by the relations

χ′(ξ) = p0ϕ
′(ξ) + q0ψ

′(ξ) and F{ϕ(ξ),ψ(ξ),χ(ξ),p0,q0} = 0
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Substituting these values of x0, y0, z0, p0, q0 and the appropriate value of t0 in equa-

tion (13), x,y and z can be expressed in terms of two parameters ξ and t in the form

x = X(ξ, t), y = Y (ξ, t) z = Z(ξ, t).

Elimination of ξ and t amongst these relations leads to an equation of the form

Θ(x,y,z) = 0 (14)

This is the equation of the integral surface of the equation F(x,y,z,p,q) = 0 through

the curve Γ .

Example 2: Find the characteristics of the equation pq = z and determine the integral

surface which passes through the parabola x = 0, y2 = z.

Solution: Here F(x,y,z,p,q) = pq − z = 0 and so the characteristic equations are

x′(t) = Fp = q, y
′(t) = Fq = p, z

′(t) = pFp + qFq = 2pq,

p′(t) = −(Fx + pFz) = p, q′(t) = −(Fy + qFz) = q

Since the equation of the given curve is x = 0, y2 = z, so we choose the initial values as

x0 = 0, y0 = ξ z0 = ξ2.

From the equation z′0 = p0x
′
0 + q0y

′
0, we get q0 = 2ξ and the given equation pq = z

provides p0 = ξ/2.

Now, the equations x′(t) = q and q′(t) = q on integration, give x = q + c1, while the

equations y′(t) = p and p′(t) = p, on integration, lead to y = p + c2, where c1 and c2

are constants. Using the initial conditions, we get 0 = 2ξ + c1 and ξ = ξ/2 + c2 so that

c1 = −2ξ and c2 = ξ/2. Hence, it follows that

x = q − 2ξ, y = p+ ξ/2.

Again, the equations p′(t) = p and q′(t) = q, on integration, give p = c3et and q = c4et,

where c3 and c4 are constants. Using the initial conditions, we have ξ/2 = c3, 2ξ = c4.

Thus p = ξ
2e
t, q = 2ξet. Hence,

x = 2ξ(et − 1), y = ξ
2
(et +1)⇒ et =

4y + x
4y − x

, ξ =
1
4
(4y − x).

Also, the characteristic equation z′(t) = 2pq = 2ξ2e2t gives on integration z = ξ2e2t,

where we have used the initial condition z0 = ξ2 at t = 0. Thus

z =
(4y − x)2

16
·
(4y + x)2

(4y − x)2
, i.e 16z = (x+4y)2
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Hence the characteristics of the given partial differential equation are

x = 2ξ(et − 1), y = ξ
2
(et +1), z = ξ2e2t

and the equation of the required integral surface is 16z = (x+4y)2
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